

Lamprey Survey - River Almond and East Pow Burn September 2008

Submitted to: Mouchel

Submitted by: AMEC Earth & Environmental (UK) Ltd.

Date 20/10/2008

Document Control Sheet

Client: Mouchel Project: Lamprey Survey - River Almond and East Pow Burn – September 2008 Title: Final Report, V2

Report Author	Heiko Klina
Signed	Halig
Date	20/10/2008
Report Checker	Gavle Pearson Bovle
Signed	Gayle Reason Bayle
Date	03/10/2008
Report Issued to:	Mouchel Building 3, 7 Luna Place Gateway West Dundee Technology Park Dundee. DD2 1XF
Copy Number	Final, V2

1	INTR	RODUCTION	1
	1.1	Background	1
	1.2	Ecology and Habitat Requirements of Lamprey	1
	1.3	Survey Conditions	2
2	SUR	VEY METHODOLOGY	3
	2.1	Electrofishing	3
	2.2	Site Selection	3
3	RES	ULTS AND DISCUSSION	5
	3.1	Site RA1	5
	3.2	Site RA2	6
	3.3	Site RA3	6
	3.4	Site EPB1	6
	3.5	Site EPB2	6
4	SUM	IMARY AND RECOMMENDATIONS	8
5	REF	ERENCES	9
6	APP	ENDIX A – SURVEY PROTOCOLS	10
7	APP	ENDIX B – SITE PHOTOGRAPHS	11
8	APP	ENDIX C – LENGTH OF LAMPREY LARVAE IN CM	17

Tables and Figures

5
0
2
2
4
6
7

1 INTRODUCTION

1.1 Background

- 1.1.1 AMEC Earth & Environmental (UK) Ltd. was contracted by Mouchel to undertake a lamprey survey in the River Almond and its tributary, East Pow Burn, within the village of Almondbank, Perthshire. The planning area of the proposed flood prevention scheme for the village of Almondbank lies within the Special Area of Conservation (SAC EU code UK0030312) of the River Tay and its two tributaries. Consequentially all planning activities within the SAC require an Environmental Impact Assessment (EIA) as governed by the European Union Directive 85/337/EEC (amended by the Council Directives 97/11/EC and 2003/35/EC) and in accordance with the Environmental Impact Assessment (Scotland) Regulations 1999.
- 1.1.2 Lampreys are an ancient group of aquatic vertebrates, often described as 'jawless fish'. The juvenile life stage remains buried in fine sediment depositions of rivers and streams. All three species of lamprey found in the United Kingdom brook lamprey (*Lampetra planeri*), river lamprey (*Lampetra fluviatilis*), and sea lamprey (*Petromyzon marinus*) are listed in Annex II and V of the EU Habitats and Species Directive (92/43/EC). Previous surveys have reported lampreys to be present in the River Tay and River Almond catchment (APEM 2004). All three of the lamprey species are listed in Annex II of the SAC description as a qualifying feature for the site selection (WEB Ref. 1). The presence of lamprey in the proposed flood defence scheme area would require an appropriate assessment of the potential effects of the design and construction activities on the lamprey population.
- 1.1.3 The aim of this study is to document the presence/absence of lampreys in the planning area of the proposed flood prevention scheme.

1.2 Ecology and Habitat Requirements of Lamprey

- 1.2.1 All three species of lamprey are found in UK rivers. The distribution of river and sea lamprey is limited to a line south of the Scottish Great Glen (Maitland & Campbell 1992). The latter are anadromous species, spawning in fresh water in spring / early summer. The freshwater larvae stage (referred to as an ammocoete) develop buried in fine sediments and filter organic particles from the surrounding interstitial space. After several years the larvae undergo a transformation process (metamorphosis); developing fully functional eyes and a mouth suction disc with teeth. Adult sea and river lamprey migrate back into the sea where they prey on smaller fish and mainly live as ectoparasites attached to larger fish with their mouth sucker.
- 1.2.2 Brook lamprey complete their entire life cycle in rivers and streams. Preferred spawning grounds are well aerated gravel beds whereas the larval stages are normally found in silt and sand dominated sediments with high organic content. This highlights the importance of a good connectivity between the habitats that lampreys require during the

different life stages, especially for the anadromous forms which migrate between freshand salt-water.

1.2.3 The larval stages of brook and river lampreys cannot be distinguished from sea lamprey larvae without laboratory analysis (Gardiner 2003). Only the brook-river lamprey group can be differentiated from sea lamprey larvae by skin pigmentation patterns and, in older larval stages, by the shape of their caudal fin.

1.3 Survey Conditions

1.3.1 The lamprey survey was carried out on 22/09/2008. Weather conditions were dry and warm with light cloud cover and temperatures around 14°C. Light showers during the week prior to the survey did not have an impact on the low water levels of the River Almond (see Figure 1 and 2 for Almondbank).

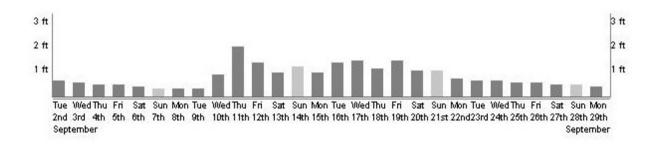


Figure 1: September water levels of the River Almond (WEB Ref. 2)

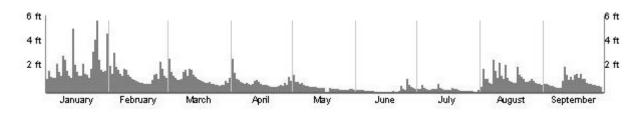


Figure 2: 2008 water levels of the River Almond (WEB Ref. 2)

2 SURVEY METHODOLOGY

2.1 Electrofishing

- 2.2.1 The survey was conducted following the recommendations by Harvey and Cowx (2003) using an Electracatch electrofishing module with 50 Hz pulsed DC power output (variable voltage). Depending on the accessibility of the survey site, a battery or generator powered electrofishing module was used (see Table 1). Both electrofishing modules were operated with a single copper cathode and a single round anode (30 cm in diameter).
- 2.2.2 Each 1 m2 sampling site was enclosed by a fine-meshed net to prevent the escape of lamprey once stunned. The predefined area was energised three times for two minutes with a pause of five minutes between each electrofishing cycle. In total five areas were surveyed (three in the River Almond, two in the East Pow Burn). Two samples were taken at each sampling station in close proximity to each other, but covering slightly different sediment types. Ammocoetes were removed from the enclosure, identified, measured and released into the river after the survey. To obtain exact length measurements of lamprey, the larvae would have required anaesthetisation. Such information was not required for this study and as such all length measurements in Appendix C are accurate to 1 cm.

2.2 Site Selection

- 2.2.1 The five sampling locations were selected during a walkover survey prior to electrofishing, which focused on fine sediment rich deposits along the River Almond and the East Pow Burn. Both rivers are discharge regulated and comprise bank and bed stabilizing measures like gabions, stone walls and concrete embankments. The embankments cause relatively homogenous flow patterns and restrict sedimentation. Consequently, few suitable habitats for ammocoetes were identified during the walkover survey. The selected sites were located in shallow areas behind gravel banks and dead wood, in wide, slowly flowing river sections (Figure 3 and Appendix B Site Photographs).
- 2.2.2 Sampling site coordinates were captured with a Garmin GPS MAP60CSx, accurate to \pm 5m.

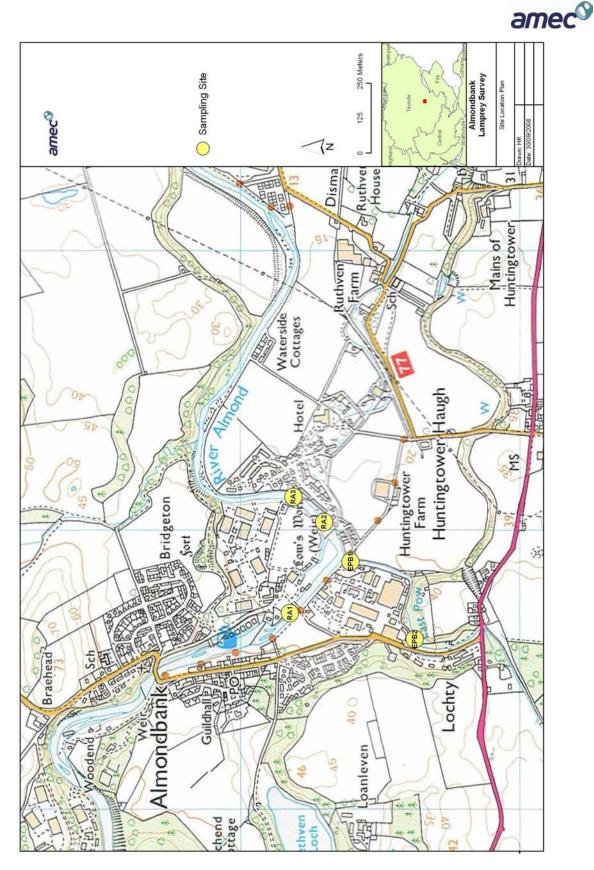


Figure 3: Sampling Locations. Two sub-samples were taken from each marked location (Ordnance Survey Copy Right Licence 100024961)

3 **RESULTS AND DISCUSSION**

Ammocoetes of river or brook lamprey (indeterminable within the field) were found in the River Almond and the East Pow Burn (Table 1).

The sub-sa	imple was	taken withir	n a five metre distanc	e from sample no. 1.	
Sample ID	Easting	Northing	Battery/Generator	River/Brook	Conservation
			Powered Equip.	Lamprey Density (m ⁻²)	Status ¹
River Almo	nd				
RA1-1	306703	725821	В	3	unfavourable
RA1-2			В	3	unfavourable
RA2-1	307029	725699	В	0	unfavourable
RA2-2			В	0	unfavourable
RA3-1	307119	725809	В	0	unfavourable
RA3-2			В	1	unfavourable
East Pow B	urn				
EPB1-1	306887	725604	В	0	unfavourable
EPB1-2			В	0	unfavourable
EPB2-1	306610	725375	G	4	unfavourable
EPB2-2			G	10	favourable

Table 1: Abundance of Lampreys per Sampling Site

3.1 Site RA1

3.1.1 The site was situated ca. 40 m upstream from the footbridge across the River Almond. Low flow velocities and large deposits of coarse organic material, mainly branches and leaf material, have resulted in an optimal habitat for lamprey larvae. Three river/brook lamprey ammocoetes were found within the m2 at RA1-1 and the replicate site RA1-2 (Figure 4). The sampling site was 50% shaded by beech and willow branches (compare Appendix A – Survey Protocols).

¹ Harvey & Cowx (2003) provide a tentative abundance classification for lamprey larvae based on UK wide survey data for different stream types. Favourable conservation status for lamprey larvae (m⁻², optimal habitat): Sea lamprey 0.2, river/brook lamprey in chalk streams ≥5, in other UK stream types: river/brook lamprey ≥ 10 .

Figure 4: River/brook lamprey larvae. Left ventral, right dorsal view

3.2 Site RA2

3.2.1 RA2 was located approximately 30 m downstream from the Low's Work Weir in the River Almond. At this point emerging grass and shrub vegetation stabilises the fine sediments together with cobbles in an area of reduced flow speeds. No lamprey larvae were found at RA2-1 or RA2-2. The sampling location was only marginally shaded by overhanging willow branches.

3.3 Site RA3

3.3.1 The remaining footings of a former bridge across the River Almond at this point have resulted in fine sediment depositions and accumulations of dead wood along the left-hand bank. One river/brook lamprey larvae was found at RA3-2. RA3-1 did not reveal any lamprey larvae.

3.4 Site EPB1

3.4.1 The outfall of the East Pow Burn comprises a concrete river bed together with stone / concrete stabilised banks around the road bridge. Approximately 15 m upstream from the bridge where the bed reinforcement ends, a mixture of cobble stones and sandy sediments were sampled. Lamprey larvae were not found on either of the replicate sampling sites.

3.5 Site EPB2

3.5.1 Approximately 450 m upstream from the outfall of the East Pow Burn the river bank consists of sand and silt, stabilised by grass and cobbles. Broadleaved trees and shrubs

provide 80% shading. The two adjacent sampling sites revealed river/brook lamprey densities of four (EPB2-1) and ten larvae per m² (EPB2-2). The population density at EPB2-2 reflects a favourable conservation status for river/brook lamprey larvae according to Harvey & Cowx (2003). Although the outfall of the East Pow Burn into the River Almond is probably impassable for lampreys during medium/low water levels.

3.5.2 Figure 5 (February 2008, compare Figure 2) shows that this tributary to the River Almond is connected during high water levels, allowing adult lampreys to migrate between the two watercourses during these periods.

Figure 5: Outfall of East Pow Burn at high water level

4 SUMMARY AND RECOMMENDATIONS

- 4.1.1 During the electrofishing survey on 22/09/2008, river/brook lamprey larvae were recorded in the River Almond and East Pow Burn in the Almondbank area. Although the River Almond has relatively few suitable fine sediment habitats within the surveyed river section, ammocoetes were present at two out of the three sampling sites.
- 4.1.2 The highest river/brook lamprey densities were found in the East Pow Burn with 10 larvae per m2, representing a favourable conservation status.
- 4.1.3 The presence of the protected lamprey larvae will require special attention during the further planning and construction phases of the Almondbank flood prevention scheme, particularly as they are listed as a feature of interest within the River Tay SAC citation and will require further detailed consideration under the Conservation (Natural Habitats 7c.) Regulations 2000 and subsequent Scottish amendments.
- 4.1.4 Because lamprey larvae live buried in the river bed, they require a steady flow of fresh water through the interstitial porous space of the sediments. Construction activities like sheet piling and dewatering of the river bed and banks could have fatal consequences for the lamprey larvae. An appropriate assessment will be required in order to identify potential interference of the scheme with the lamprey habitat and provide mitigation advice.
- 4.1.5 Suitable mitigation measures should be implemented in the event that construction activities during the implementation of the flood defence scheme are likely to cause disturbance of the river sediments of the River Almond or the East Pow Burn. For example, potential habitats could be identified by a qualified biologist and lamprey larvae could then be removed from the sites using electrofishing equipment.
- 4.1.6 It is important to note that the proposed flood prevention scheme will have to consider the habitat requirements of lampreys, allowing for free passage in upstream and downstream direction (The Scottish Executive 2000) and maintain or improve the quality of the current habitat.

5 **REFERENCES**

- 5.1.1 35/337/EEC: Official Journal of the European Union NO. L 175 , 05/07/1985 P. 0040 0048
- 5.1.2 97/11/EC: Official Journal of the European Union NO. L 073, 14/03/1997 P. 0005
- 5.1.3 2003/35/EC: Official Journal of the European Union NO. L 156 , 25/06/2003 P. 0017 0025
- 5.1.4 APEM 2004. Distribution of sea, brook and river lampreys on the River Tay. Scottish Natural.
- 5.1.5 Harvey & Cowx 2003: Monitoring the River, Brook and Sea Lamprey, *Lampetra fluviatilis, L. planeri* and *Petromyzon marinus*. Conserving Natura 2000 Rivers Monitoring Series No 5, English Nature, Peterborough.
- 5.1.6 Gardiner 2003: Identifying Lamprey. A field key for Sea, River and Brook Lamprey. Conserving Natura 2000 Rivers Conservation Techniques Series No. 4. English Nature, Peterborough.
- 5.1.7 Maitland & Campbell 1992: Freshwater Fishes of the British Isles. Harper Collins. London.
- 5.1.8 The Scottish Executive 2000: River Crossings and Migratory Fish: Design Guidance. The Scottish Executive. Edinburgh.
- 5.1.9 WEB Ref. 1: http://www.jncc.gov.uk/protectedsites/sacselection/sac.asp?EUCode=UK0030312
- 5.1.10 WEB Ref. 2: http://www.fishbritain.co.uk/Tay/RiverLevels14.asp

6 Appendix A – Survey Protocols

			Site ł	nabita	at record			
Site identification			Site c	ode 1	2A I	Catch	ment River A	human
Site name		NGR 30			r name River			
Riparian shading			100/1000		11104	1111111111		20/00/
What percentage of			urface of the	site is	overhung by rip	rian veget	ation? Estimat	e this
percentage, for the t								
Deciduous trees & s				erous			ceous vegetat	ion
Migratory access			2					
What is the accessit	oility	of the si	te ?	Salm	ion	Sea tro	out	
Always accessible				×			K	
Sometimes accessibl	е							
Never accessible								
Substrate embed	ded	ness						
What is the degree	of su	ubstrate	embededdnes	s thro	ughout the site?	Tick one I	oox.	
		High		Med		Low	X	
Flow conditions								
Briefly describe the	prev	ailing flow	w conditions	(as ob	served at the tir	ne of the H	HABSCORE s	urvey).
Calum 6	0	2 100/0						
Upstream land-us	0.0	nsidera	tions					
What is the principa				stream	of the site? Tick	appropria	te box(es).	
Moor / heathland		1	ous woodland	1	Deciduous wo		1	asture
Jrban development		Rough		X	Industrial land		Arable land	
Tips / waste		Other						
rips / waste		Ounci						
Potential impacts								
	e an	y impacts	s at the site f	rom th	ne following sour	ces? Tick a	appropriate bo	ox(es).
Are there likely to b	e an	y impact: Stocki		rom th	e following sour		appropriate bo ion barriers	
Are there likely to b oH effects		Stocki		1		Migrat	·· ·	ox(es). ∡
Potential impacts Are there likely to b pH effects Habitat modification Other		Stocki	ng	1	Pollution	Migrat	ion barriers	
Are there likely to b oH effects Habitat modification Other	×	Stocki River	ng engineering	×	Pollution	Migrat	ion barriers	
Are there likely to b oH effects Habitat modification Other Width and depth	prot	Stocki River	ng engineering ottom stop	×	Pollution Low flows	Migrat Flow r	ion barriers	
Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the	prot	Stocki River	ng engineering ottom stop m and depths	net to the	Pollution Low flows e nearest 1.0cm	Higrat Flow r	ion barriers regulation	
Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width	pro fe ne	Stocki River file at bo arest 0.1	ng engineering ottom stop m and depths	net to the	Pollution Low flows	Higrat Flow r	ion barriers regulation	
Are there likely to b pH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at ¹ /4 channel	prot e ne	Stocki River file at be arest 0.1	ng engineering ottom stop m and depths	net to the	Pollution Low flows e nearest 1.0cm	Higrat Flow r	ion barriers regulation	
Are there likely to b pH effects Habitat modification	prot e ne widt	Stocki River file at be arest 0.1	ng engineering ottom stop m and depths	net to the	Pollution Low flows e nearest 1.0cm	Higrat Flow r	ion barriers regulation	
Are there likely to b pH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/2 channel	prot e ne widt	Stocki River file at be arest 0.1	ng engineering ottom stop m and depths 10 0.6 1	net to the	Pollution Low flows e nearest 1.0cm	Higrat Flow r	ion barriers regulation	
Are there likely to b bH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Section dimension	prote ne widt	Stocki River file at bo arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	
Are there likely to b bH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Section dimension Record section lengt	prote ne widt	Stocki River file at bo arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	
Are there likely to b bH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/2 channel Depth at 3/4 channel Section dimension Record section length	prote ne widt	Stocki River file at bo arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	
Are there likely to b bH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Section dimension Record section length Section length Section width	prot e ne widt widt widt	Stocki River file at be arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	
Are there likely to b pH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/2 channel	prot e ne widt widt widt	Stocki River file at be arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	
Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Section dimension Record section length Section length Section width	prof e ne widt widt hs a	Stocki River file at bo arest 0.1	ng engineering m and depths 10 0.6 1 0.6	net to the	Pollution Low flows e nearest 1.0cm.	Migrat Flow r	e 0.4 m	

Absent	Scarce	, Common	Frequent	Dominant
0%	>0% & <5%	<u><</u> 5% & <20%	<u><</u> 20% & <50%	<u><</u> 50%
А	S	С	F	D

What percentage of the stream bed area in each section is composed of the following substrate types? Enter A, S, C, F or D as appropriate (see above table).

Substrate category

A									
A									
A									
D									
Ŧ									
S									
	AAADFS	A A A D F S	A A D F S	A A D F S	A	A	A	A	A

Flow

What percentage of the water surface area in each section is composed of the following flow types? Enter A, S, C, F or D as appropriate.

Flow category

Cascade/torrential	A				
Turbulent/broken deep	A				Τ
Turbulent/broken shallow	A				Τ
Glide/run deep	A				
Glide/run shallow	S				
Slack deep	D				
Slack shallow	C				Τ

Sources of cover for >10 cm trout

What percentage of the stream bed area in each section could provide cover (for a >10 cm trout) in the form of submerged overhang, or overhang within 0.5 m of the water surface? Indicate the abundance of cover within the various categories listed below. For 'submerged vegetation' include all macrophytes, mosses and algae providing cover. Estimate as 0, 1, 2, 3, 4, 5, 10, 15, 20, 25 ... 100%.

Source of cover

Submerged vegetation	A					
Boulders, cobbles, etc.	S					
Tree root systems	S					
Branches and logs	C					
Undercut banks	A					
Other submerged cover	S					
Overhang within 0.5 m	A					
Area of deep water	S					

		Site ł	nabita	at record						
Site identification		Site c	ode 1	RA2		Cate	chm	ient River Alu	rond	te
Site name	NGR 3	7023 77256.99			Alm					
Riparian shading o What percentage of percentage, for the t	of the site the water	surface of the	site is	overhung by	riparia	ın veş				
Deciduous trees & sl	hrubs 5	Conif	erous	trees		Her	bac	eous vegetat	ion	
Migratory access										
What is the accessibility	ility of the	site ?	Salm	non		Sea		ut		
Always accessible			X				X			-
Sometimes accessible Never accessible	9									
Substrate embedd What is the degree of		embededdnes	s thro	ughout the s	ite? Tid	rk on	e h	ox		
	High			lium		Low		X		
Flow conditions										
Briefly describe the p	orevailing fl	ow conditions	(as ob	served at the	time	of th	e H	ABSCORE s	urvey).
Calua	602	11000								
Calm Upstream land-use What is the principal			stream	of the site?	Tick ap	oprop	riat	e box(es).		
Moor / heathland	Conife	rous woodland		woodland \prec Improved past						
Urban development	Rough	pasture		Industrial la				Arable land		K
Tips / waste	Other						•			
Potential impacts Are there likely to be	e any impa	cts at the site f	rom th	ne following s	ource	s? Tic	k aj	opropriate bo	ox(es)	
Are there likely to be	e any impac		rom th	ne following s Pollution	ource	1		opropriate bo	ox(es)	
Are there likely to be pH effects	Stoc		1		1	Mig	rati	· · ·		
	Stoc	king	×	Pollution	1	Mig	rati	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p	Stoc Rive	king r engineering bottom stop	メ メ net	Pollution Low flows	×	Mig	rati	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the	Stoc Rive	king r engineering bottom stop	× × net s to th	Pollution Low flows e nearest 1.0	cm.	Mig Flov	rati v re	on barriers egulation		
Are there likely to be pH effects Habitat modification	Stoc Rive	king r engineering bottom stop Im and depths	× × net s to th	Pollution Low flows	cm.	Mig Flov	rati v re	on barriers egulation		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at ¹ /4 channel w	Stoc Rive profile at e nearest 0. width	king r engineering bottom stop Im and depths	× × net s to th	Pollution Low flows e nearest 1.0	cm.	Mig Flov	rati v re	on barriers egulation		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/2 channel w	Stoc Rive profile at nearest 0. width width	king r engineering bottom stop Im and depths 15 0.3 0.8	× × net s to th	Pollution Low flows e nearest 1.0	cm.	Mig Flov	rati v re	on barriers egulation		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/2 channel w Depth at 3/4 channel w	Stoc Rive profile at nearest 0 width width width	king r engineering bottom stop Im and depths 15 0.3 0.3 0.3	× × net s to th Depte	Pollution Low flows e nearest 1.0 in cuclos	cm.	Mig Flov	m m	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at ¼ channel w Depth at ¼ channel w Depth at ¼ channel w Section dimensions Record section length	Stoc Rive profile at nearest 0 width width width	king r engineering bottom stop Im and depths 15 0.3 0.3 0.3	× × net s to th Depte	Pollution Low flows e nearest 1.0 in cuclos	cm.	Mig Flov	m m	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width	Stoc Rive profile at nearest 0 width width width	king r engineering bottom stop Im and depths 15 0.3 0.3 0.3	× × net s to th Depte	Pollution Low flows e nearest 1.0 in cuclos	cm.	Mig Flov	m m	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at ¼ channel w Depth at ¼ channel w Depth at ¼ channel w Section dimensions Record section length	Stoc Rive Profile at e nearest 0. width width width s ns and widt	king r engineering bottom stop Im and depths 15 0.3 0.3 0.3	× × net s to th Depte	Pollution Low flows e nearest 1.0 in cuclos	cm.	Mig Flov	m m	on barriers		
Are there likely to be pH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/4 channel w Depth at 3/4 channel w Section dimensions Record section length Section length Section width	Stoc Rive Profile at e nearest 0. width width s ns and widt vidth	king r engineering bottom stop Im and depths 15 0.3 0.3 0.3	× × net s to th Depte	Pollution Low flows e nearest 1.0 in cuclos	cm.	Mig Flov	m m	on barriers		

Substrate

Absent	Scarce	Common	Frequent	Dominant
0%	>0% & <5%	<u><</u> 5% & <20%	<u><</u> 20% & <50%	<u><</u> 50%
A	S	C	F	D

What percentage of the stream bed area in each section is composed of the following substrate types? Enter A, S, C, F or D as appropriate (see above table).

Substrate category

A										
S										
C										
D										
5										
A										
	ASUDSA	A S C D S A	A S C D S A	A	A	A	A	A	A	A

Flow

What percentage of the water surface area in each section is composed of the following flow types? Enter A, S, C, F or D as appropriate.

Flow category

Cascade/torrential	A				
Turbulent/broken deep	Ŧ				
Turbulent/broken shallow	D				Γ
Glide/run deep	A				
Glide/run shallow	Ć				Γ
Slack deep	A				
Slack shallow	S				Γ

Sources of cover for >10 cm trout

What percentage of the stream bed area in each section could provide cover (for a >10 cm trout) in the form of submerged overhang, or overhang within 0.5 m of the water surface? Indicate the abundance of cover within the various categories listed below. For 'submerged vegetation' include all macrophytes, mosses and algae providing cover. Estimate as 0, 1, 2, 3, 4, 5, 10, 15, 20, 25 ... 100%.

Source of cover

Submerged vegetation	A						
Boulders, cobbles, etc.	D						
Tree root systems	S						
Branches and logs	A						
Undercut banks	S						
Other submerged cover	C					- · · · ·	
Overhang within 0.5 m	A		1.1.1			- :	
Area of deep water	S						

Appendix 2.	H	ABSC	OR	E da	ta i	nput sh	eet				
				Site h	abit	at record					
Site identification				Site co	ode (RA3		Cat	chm	ient River Alexe	and the
Site name		NGR 30	2/19/7	25809	Rive	er name Rive	es Alm			Survey date	
Riparian shading			/10//								
What percentage of			irface o	of the s	ite is	overhung by	riparia	n ves	geta	tion? Estimate	e this
percentage, for the t											
Deciduous trees & s	hru	bs 10		Conife	erous	trees		Her	bac	eous vegetati	on
Migratory access											
What is the accessib	oility	of the si	te ?	2.5.2.2	Saln	non		Sea	tro	ut	
Always accessible					>				×		
Sometimes accessibl	e										
Never accessible											
Substrate embede	ded	ness									
What is the degree		1	embed	eddnes			site? Tic				
		High			Med	lium		Low	/	X	
Flow conditions		uiling flou			(aa ah			- 6 + h		ARCORE	
Briefly describe the						served at th	etime	of th	ен	ABSCORE SU	irvey).
5/023	fe	owing	10	stagno	and						
Upstream land-us What is the principa				ely ups	tream	of the site?	Tick ap	prop	oriat	e box(es).	
Moor / heathland		Conifere	ous wo	odland	X	Deciduous	woodl	and	X	Improved pa	asture
Urban development		Rough	pasture	2	Industrial l		and			Arable land	X
Tips / waste		Other							/~		
Potential impacts Are there likely to b	e an	y impacts	s at the	e site fr	om t	ne following	source	s? Tic	:k aj	opropriate bo	ox(es).
pH effects		Stocki	ng		×	Pollution	×	Mig	rati	on barriers	х
Habitat modification	×	River	engine	ering	X	Low flows		Flov	w re	gulation	
Other											
Width and depth Record widths to the	•					e nearest 1.0	Ocm.				
Channel width			12		De	oth at s	amplin	9 5	Site	0.3m	
Depth at ¼ channel	wid	th	0.6				/	4			
Depth at ½ channel	wid	th	1								
Depth at ³ / ₄ channel	widt	th	0.3								
Section dimension Record section lengt		nd width	s to th	e neare	est 0.	m and dept	ths to t	he ne	eare	est I cm.	
Section length											
Section width							1				
Depth at 1/4 channel	widt	:h									
Depth at ½ channel									-		
Depth at ³ / ₄ channel									1		
	-										

Substrate

Absent	Scarce	Common	Frequent	Dominant
0%	>0% & <5%	<u><</u> 5% & <20%	<u><</u> 20% & <50%	<u><</u> 50%
A	S	С	F	D

What percentage of the stream bed area in each section is composed of the following substrate types? Enter A, S, C, F or D as appropriate (see above table).

Substrate category

Bedrock/artificial	A					
Boulders >25.6 cm	A					
Cobbles 6.4-25.6 cm	S					
Gravel/coarse sand 0.2-6.4 cm	D					
Fine sand/silt <0.2 cm	S					
Compacted clay	A					
		 			 1	

Flow

What percentage of the water surface area in each section is composed of the following flow types? Enter A, S, C, F or D as appropriate.

Flow category

Cascade/torrential	A			
Turbulent/broken deep	A			
Turbulent/broken shallow	A			
Glide/run deep	C			
Glide/run shallow	A			
Slack deep	D			
Slack shallow	3			

Sources of cover for >10 cm trout

What percentage of the stream bed area in each section could provide cover (for a >10 cm trout) in the form of submerged overhang, or overhang within 0.5 m of the water surface? Indicate the abundance of cover within the various categories listed below. For 'submerged vegetation' include all macrophytes, mosses and algae providing cover. Estimate as 0, 1, 2, 3, 4, 5, 10, 15, 20, 25 ... 100%.

C		
Source	Ot.	cover
Source	0	COver

Submerged vegetation	4					
Boulders, cobbles, etc.	S					
Tree root systems	S					
Branches and logs	C					
Undercut banks	A					
Other submerged cover	Ś					
Overhang within 0.5 m	A					
Area of deep water	S					

			Site	habit	at record						
Site identification			Site	code /	TPB1		Cat	chm	ent River,	Alum	nd/
Site name		NGR 30			er name East						
			5001170000	1414	I nume Last	1000	Dur	~	our rey duce	. 220	<u>)</u> ///
Riparian shading What percentage of			urface of the	cito ic	overhung by	riparia		anto	tion? Estima	ta thi	
percentage, for the t								gela		ue un	3
Deciduous trees & s				ferous		030 07		bac	eous vegeta	ion	
Migratory access		10									
What is the accessib	oility	of the si	te ?	Saln	non		Sea	tro	ut		
Always accessible											
Sometimes accessibl	е				×				X		
Never accessible											
Substrate embede											
What is the degree		1	embededdne			ite? Ti			OX.		
		High		Med	ium X		Lov	V			
Flow conditions				(ADCOORT		
Briefly describe the	prev	ailing flow	w conditions	(as ob	served at the	time	of th	e H	ABSCORE	survey	/).
laminar	<	0.2 u	·/sec								
Upstream land-us	e co	onsidera	tions								
What is the principa	l lan	id-use im	mediately up	ostream	of the site?	Tick a	ppro	priat	e box(es).		
Moor / heathland		Conifere	ous woodlan	d 🗙	Deciduous	wood	land	X	Improved p	bastur	e x
		Rough pasture						/			
Urban development		Rough	pasture	×	Industrial la	nd			Arable land		X
		Rough Other	pasture		Industrial la	Ind			Arable land		X
Tips / waste			pasture		Industrial la	Ind			Arable land		×
Tips / waste Potential impacts	e an	Other		×						ov(es	
Tips / waste Potential impacts Are there likely to b	e an	Other y impacts	s at the site	from th	ne following s	ource	s? Tie	ck aj	opropriate b).
Tips / waste Potential impacts Are there likely to b pH effects	e an	Other y impacts Stocki	s at the site	from th	ne following s Pollution	ource	s? Tio	ck aj grati	opropriate b on barriers	ox(es).
Tips / waste Potential impacts Are there likely to b pH effects Habitat modification	e an	Other y impacts Stocki	s at the site	from th	ne following s	ource	s? Tio	ck aj grati	opropriate b).
Urban development Tips / waste Potential impacts Are there likely to b pH effects Habitat modification Other	e an	Other y impacts Stocki	s at the site	from th	ne following s Pollution	ource	s? Tio	ck aj grati	opropriate b on barriers).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth	pro	Other y impacts Stocki River	s at the site ng engineering ottom stop	from th	ne following s Pollution Low flows	source X X	s? Tio	ck aj grati	opropriate b on barriers).
Tips / waste Potential impacts Are there likely to b pH effects Habitat modification Other Width and depth Record widths to the	pro	Other y impacts Stocki River	s at the site ing engineering ottom stop m and depth	from th	ne following s Pollution Low flows	source X X	s? Tio	ck aj grati	opropriate b on barriers).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width	prote ne	Other y impacts Stocki River file at be arest 0.1	s at the site ng engineering ottom stop	from th	ne following s Pollution Low flows e nearest 1.0	cm.	s? Tio Mig Flo	ck aj grati w re	opropriate b on barriers).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at ¹ / ₄ channel	prote ne	Other y impacts Stocki River file at be arest 0.1	s at the site ing engineering ottom stop m and depth	from th	ne following s Pollution Low flows e nearest 1.0	cm.	s? Tio Mig Flo	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at ¹ / ₄ channel	prote ne	Other y impacts Stocki River file at be arest 0.1	s at the site ing engineering ottom stop m and depth 5 0.3 1	from th	ne following s Pollution Low flows e nearest 1.0	cm.	s? Tio Mig Flo	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/2 channel Depth at 1/2 channel	prote ne widt	Other y impacts Stocki River file at be arest 0.1	s at the site ing engineering ottom stop m and depth	from th	ne following s Pollution Low flows e nearest 1.0	cm.	s? Tio Mig Flo	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to b oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at ¹ / ₄ channel Depth at ¹ / ₂ channel	prote ne widt	Other y impacts Stocki River file at be arest 0.1	s at the site ing engineering ottom stop m and depth 5 0.3 1	from th	ne following s Pollution Low flows e nearest 1.0	cm.	s? Tio Mig Flo	ck aj grati w re	opropriate b on barriers egulation).
Fips / waste Potential impacts Are there likely to bo DH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Depth at 3/4 channel	prote ne widt widt	Other y impacts Stocki River file at be arest 0.11	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the fro	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to both oH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Depth at 3/4 channel Depth at 3/4 channel	prote ne widt widt	Other y impacts Stocki River file at be arest 0.11	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the fro	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).
Fips / waste Potential impacts Are there likely to bo DH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Depth at 3/4 channel Depth at 3/4 channel	prote ne widt widt	Other y impacts Stocki River file at be arest 0.11	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the state of	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to brocher Habitat modification Other Width and depth Record widths to the Channel width Depth at ¼ channel Depth at ¼ channel Depth at ¼ channel Depth at ¾ channel Depth at ¾ channel Depth at ⅔ channel	prote ne widt widt	Other y impacts Stocki River file at be arest 0.11	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the state of	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to b pH effects Habitat modification Other Width and depth Record widths to the Channel width Depth at 1/4 channel Depth at 1/4 channel Depth at 3/4 channel Section dimension Record section length Section length Section width	prote ne widt widt widt	Other y impacts Stocki River file at be arest 0.11 th th th th	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the state of	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).
Tips / waste Potential impacts Are there likely to b pH effects Habitat modification	profe ne widt widt widt	Other y impacts Stocki River file at be arest 0.11 th th th th	s at the site ng engineering ottom stop m and depth 5 0.3 1 1.2	from the state of	e nearest 1.0	cm.	s? Tio	ck aj grati w re	opropriate b on barriers egulation).

Substrate

Absent	Scarce	Common	Frequent	Dominant
0%	>0% & <5%	<u><</u> 5% & <20%	<u><</u> 20% & <50%	≤50%
A	S	С	F	D

What percentage of the stream bed area in each section is composed of the following substrate types? Enter A, S, C, F or D as appropriate (see above table).

Substrate category

A									
S									
F									
D									
F							100		T
A									
	ASFDFA	A S F D F A	A S F D F A	A S F D F A	A	A	A	A	A

Flow

What percentage of the water surface area in each section is composed of the following flow types? Enter A, S, C, F or D as appropriate.

Flow category

Cascade/torrential	A					
Turbulent/broken deep	A					Τ
Turbulent/broken shallow	A			1. 1. 1. 1.		T
Glide/run deep	S					
Glide/run shallow	C					
Slack deep	Ŧ					
Slack shallow	D					1

Sources of cover for >10 cm trout

What percentage of the stream bed area in each section could provide cover (for a >10 cm trout) in the form of submerged overhang, or overhang within 0.5 m of the water surface? Indicate the abundance of cover within the various categories listed below. For 'submerged vegetation' include all macrophytes, mosses and algae providing cover. Estimate as 0, 1, 2, 3, 4, 5, 10, 15, 20, 25 ... 100%.

Source of cover

Submerged vegetation	S					
Boulders, cobbles, etc.	S					
Tree root systems	C					
Branches and logs	S	 				
Undercut banks	S					
Other submerged cover	5	 		 	48.1	
Overhang within 0.5 m	S					
Area of deep water	F					1.4

		Site h	abit	at record						
Site identification		Site co	ode 🖉	PB Z		Cate	chm	ent River A	lunon	4
Site name	NGR 3	610 /72537	Mar .	Contract of the second s						-
		\$10 72551-	2 1414	A Harrie 2407	1000	DA	~	our vey dates	0/0	10
Riparian shading o What percentage of t		urface of the e	ito is	overhung by	riporia	n vor	toto	tion? Estimate	a thic	
percentage, for the th							gela	cion: Estimati	e uns	
Deciduous trees & sh	•						bac	eous vegetatio	on	
Migratory access										
What is the accessibi	lity of the si	te ?	Salm	non		Sea	tro	ut	1.00	
Always accessible	1			×						
Sometimes accessible			×					×		
Never accessible										
Substrate embedd	edness									
What is the degree o	f substrate	embededdnes	s thro	ughout the si	ite? Tie	ck on	e b	ox.		
	High		Med	lium 🗸		Low	,			
Flow conditions										
Briefly describe the p	revailing flow	w conditions ((as ob	served at the	time	of th	e H	ABSCORE su	irvey)	•
laminar	1021	m ler c								
Upstream land-use										
What is the principal			tream	of the site?	Fick an	oprop	riat	e box(es).		
Moor / heathland	1	ous woodland	1					· /	sture	×
Jrban development	Rough	Rough pasture		✓ Industrial la		nd Arable		Arable land		,
				industrial la	na			Al able latiu		X
Tips / waste	Other			industrial la	na			Al able land		X
•	Other				na					X
Potential impacts						s? Tic	k aj		ox(es).	
Potential impacts Are there likely to be		s at the site fr				1			x(es).	
Potential impacts Are there likely to be pH effects	any impacts Stocki	s at the site fr	rom th	ne following s	ource	Mig	rati	opropriate bo		
Tips / waste Potential impacts Are there likely to be pH effects Habitat modification Other	any impacts Stocki	s at the site fr	rom th	ne following s Pollution	ource	Mig	rati	opropriate bo on barriers		
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p	any impacts Stocki River	s at the site fr ng engineering ottom stop	rom th	Pollution Low flows	ource	Mig	rati	opropriate bo on barriers		
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the	any impacts Stocki River	s at the site fr ng engineering ottom stop m and depths	rom th	e nearest 1.0	ource × × cm.	Mig Flov	rati	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width	any impacts Stocki River profile at be nearest 0.1	s at the site fr ing engineering ottom stop m and depths	rom th	Pollution Low flows	ource × × cm.	Mig Flov	rati	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w	any impacts Stocki River rofile at be nearest 0.1	s at the site fr ng engineering ottom stop m and depths	rom th	e nearest 1.0	ource × × cm.	Mig Flov	rati	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/2 channel w	any impacts Stocki River rofile at be nearest 0.1 vidth	s at the site fr ng engineering ottom stop m and depths 5 0.3 1	rom th	e nearest 1.0	ource × × cm.	Mig Flov	rati	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/2 channel w	any impacts Stocki River orofile at be nearest 0.11 vidth vidth	s at the site fr ing engineering ottom stop m and depths	rom th	e nearest 1.0	ource × × cm.	Mig Flov	rati	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/4 channel w Depth at 3/4 channel w	any impacts Stocki River orofile at be nearest 0.11 vidth vidth	s at the site fr ng engineering ottom stop m and depths 5 0.3 1 1 1.2	rom th	e nearest 1.0	ource × × cm.	Mig Flov	v re	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/2 channel w Depth at 3/4 channel w Section dimensions Record section length	any impacts Stocki River orofile at be nearest 0.11 vidth vidth	s at the site fr ng engineering ottom stop m and depths 5 0.3 1 1 1.2	rom th	e nearest 1.0	ource × × cm.	Mig Flov	v re	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be oH effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/4 channel w Depth at 3/4 channel w Depth at 3/4 channel w Depth at 3/4 channel w Depth at 3/4 channel w	any impacts Stocki River orofile at be nearest 0.11 vidth vidth	s at the site fr ng engineering ottom stop m and depths 5 0.3 1 1 1.2	rom th	e nearest 1.0	ource × × cm.	Mig Flov	v re	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be off effects Habitat modification Other Width and depth p Record widths to the Channel width Depth at 1/4 channel w Depth at 1/4 channel w Depth at 3/4 channel w Depth at 3/4 channel w Section dimensions Record section length fection length	any impacts Stocki River orofile at be nearest 0.11 vidth vidth s and width	s at the site fr ng engineering ottom stop m and depths 5 0.3 1 1 1.2	rom th	e nearest 1.0	ource × × cm.	Mig Flov	v re	opropriate bo on barriers egulation	X	
Potential impacts Are there likely to be pH effects Habitat modification	any impacts Stocki River orofile at be nearest 0.11 vidth vidth s and width	s at the site fr ng engineering ottom stop m and depths 5 0.3 1 1 1.2	rom th	e nearest 1.0	ource × × cm.	Mig Flov	v re	opropriate bo on barriers egulation	X	

Absent	Scarce	Common	Frequent	Dominant
0%	>0% & <5%	<u><</u> 5% & <20%	<u><</u> 20% & <50%	<u><</u> 50%
А	S	С	F	D

What percentage of the stream bed area in each section is composed of the following substrate types? Enter A, S, C, F or D as appropriate (see above table).

Substrate category

Bedrock/artificial	A						
Boulders >25.6 cm	S						
Cobbles 6.4-25.6 cm	I	-		 			
Gravel/coarse sand 0.2-6.4 cm	T						
Fine sand/silt <0.2 cm	F						
Compacted clay	A						

Flow

What percentage of the water surface area in each section is composed of the following flow types? Enter A, S, C, F or D as appropriate.

Flow category

Cascade/torrential	A				
Turbulent/broken deep	Â				
Turbulent/broken shallow	A				
Glide/run deep	S				
Glide/run shallow	C				
Slack deep	Ŧ				
Slack shallow	D				

Sources of cover for >10 cm trout

What percentage of the stream bed area in each section could provide cover (for a >10 cm trout) in the form of submerged overhang, or overhang within 0.5 m of the water surface? Indicate the abundance of cover within the various categories listed below. For 'submerged vegetation' include all macrophytes, mosses and algae providing cover. Estimate as 0, 1, 2, 3, 4, 5, 10, 15, 20, 25 ... 100%.

Source of cover Submerged vegetation S Boulders, cobbles, etc. S Tree root systems C Branches and logs S S Undercut banks Other submerged cover S S Overhang within 0.5 m Area of deep water F

7 Appendix B – Site Photographs

Site	Image
RA1-1	
RA1-2	

Site	Image
RA2-1	
RA2-2	

Site	Image
RA3-1	

Site	Image
RA3-2	

Site	Image
EPB1-1	<image/>
EPB1-2	N.A.
EPB2-1	

Site	Image
EPB2-2	

No. of Larvae	RA1-1	RA1-2	RA2-1	RA2-2	RA3-1	RA3-2	EPB1-1	EPB1-2	EPB2-1	EPB2-2
1	10	15	-	-	-	15	-	-	6	10
2	8	8							12	6
3	7	12							14	8
4										12
5										12
6										7
7										8
8										10
9										12
10										10

8	Appendix C – Length of Lamprey Larvae in cm	
---	---	--